Có bao nhiêu số có 5 chữ số khác nhau được tạo thành từ các số 1, 2, 3, 4, 5
Với các chữ số \(2;\;3;\;4;\;5;\;6\) có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số \(2;\;3\) không đứng cạnh nhau? A. 120 Số cần tìm có dạng \(\overline {abcde} \). Ta xét có bao nhiêu số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\) : – Chọn a : có 5 cách – Chọn b : có 4 cách – Chọn c : có 3 cách – Chọn d : có 2 cách – Chọn e : có 1 cách Có \(5 \times 4 \times 3 \times 2 \times 1 = 120\) số lập từ 5 chữ số trên. adsense Ta xét có bao nhiêu số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\), mà chữ số 2 và 3 đứng cạnh nhau. Nhận xét : có 4 vị trí gần nhau là \(\overline {ab} ,\,\,\overline {\,bc\,\,} \,,\,\,\,\overline {cd} ,\,\,\,\overline {de} \). Với mỗi vị trí đứng gần nhau, chữ số 2 có thể đứng trước hoặc sau chữ số 3, vậy có 2 cách sắp xếp vị trí cho 2 và 3. Với 3 vị trí còn lại để xếp các chữ số 4, 5, 6. – Chữ số 4 có 3 cách xếp – Chữ số 5 có 2 cách xếp – Chữ số 6 có 1 cách xếp Vậy sẽ có \(3 \times 2\, \times 1 = 6\) cách để xếp 3 chữ số 4, 5, 6. Vậy có tất cả : \(4 \times 2 \times 6 = 48\) số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\), mà chữ số 2 và 3 đứng cạnh nhau. adsense Câu hỏi:
Lời Giải: Số các số có đúng 5 chữ số khác nhau là 5! = 120. Số các số có đúng 5 chữ số khác nhau và bắt đầu bởi số 1 là 4! = 24 adsense Do đó kết quả cần tìm là 120−24=96 =============== ====================
Câu hỏi: Có bao nhiêu số có năm chữ số khác nhau được tạo thành từ các chữ số $1,2,3,4,5,6$ ? Lời giải . Đáp án A.
Click để xem thêm... T Written by The KnowledgeModerator Moderator
|