Bảng giá trị tới hạn Student

Bảng tra phân phối student – t trong xác suất thống kê

17/01/2019 Nguyễn Tấn Linh Thống kê ứng dụng 5 comments

Tóm tắt tài liệu

  • Phân phối Student là gì?
  • Ứng dụng
  • Tính chất
  • Cách tra bảng phân phối student (phân phối t)

Bảng tra phân phối student – t được ứng dụng trong khá nhiều môn học như xác suất thống kê, kinh tế lượng của các trường thuộc khối ngành kinh tế. Ở bài viết này, tailieure.com sẽ giải đáp ý nghĩa, cách dùng cũng như các dạng bài tập có ứng dụng bảng này.

TẢI XUỐNG ↓

Bậc tự do (df) | p-value0.250.20.150.10.050.0250.020.010.0050.00250.0010.0005111.3761.9633.0786.31412.7115.8931.8263.66127.3318.3636.620.8161.0611.3861.8862.924.3034.8496.9659.92514.0922.3331.630.7650.9781.251.6382.3533.1823.4824.5415.8417.45310.2112.9240.7410.9411.191.5332.1322.7762.9993.7474.6045.5987.1738.6150.7270.921.1561.4762.0152.5712.7573.3654.0324.7735.8936.86960.7180.9061.1341.441.9432.4472.6123.1433.7074.3175.2085.95970.7110.8961.1191.4151.8952.3652.5172.9983.4994.0294.7855.40880.7060.8891.1081.3971.862.3062.4492.8963.3553.8334.5015.04190.7030.8831.11.3831.8332.2622.3982.8213.253.694.2974.781100.70.8791.0931.3721.8122.2282.3592.7643.1693.5814.1444.587110.6970.8761.0881.3631.7962.2012.3282.7183.1063.4974.0254.437120.6950.8731.0831.3561.7822.1792.3032.6813.0553.4283.934.318130.6940.871.0791.351.7712.162.2822.653.0123.3723.8524.221140.6920.8681.0761.3451.7612.1452.2642.6242.9773.3263.7874.14150.6910.8661.0741.3411.7532.1312.2492.6022.9473.2863.7334.073160.690.8651.0711.3371.7462.122.2352.5832.9213.2523.6864.015170.6890.8631.0691.3331.742.112.2242.5672.8983.2223.6463.965180.6880.8621.0671.331.7342.1012.2142.5522.8783.1973.6113.922190.6880.8611.0661.3281.7292.0932.2052.5392.8613.1743.5793.883200.6870.861.0641.3251.7252.0862.1972.5282.8453.1533.5523.85210.6860.8591.0631.3231.7212.082.1892.5182.8313.1353.5273.819220.6860.8581.0611.3211.7172.0742.1832.5082.8193.1193.5053.792230.6850.8581.061.3191.7142.0692.1772.52.8073.1043.4853.768240.6850.8571.0591.3181.7112.0642.1722.4922.7973.0913.4673.745250.6840.8561.0581.3161.7082.062.1672.4852.7873.0783.453.725260.6840.8561.0581.3151.7062.0562.1622.4792.7793.0673.4353.707270.6840.8551.0571.3141.7032.0522.1582.4732.7713.0573.4213.69280.6830.8551.0561.3131.7012.0482.1542.4672.7633.0473.4083.674290.6830.8541.0551.3111.6992.0452.152.4622.7563.0383.3963.659300.6830.8541.0551.311.6972.0422.1472.4572.753.033.3853.646400.6810.8511.051.3031.6842.0212.1232.4232.7042.9713.3073.551500.6790.8491.0471.2991.6762.0092.1092.4032.6782.9373.2613.496600.6790.8481.0451.2961.67122.0992.392.662.9153.2323.46800.6780.8461.0431.2921.6641.992.0882.3742.6392.8873.1953.4161000.6770.8451.0421.291.661.9842.0812.3642.6262.8713.1743.3910000.6750.8421.0371.2821.6461.9622.0562.332.5812.8133.0983.3z*0.6740.8411.0361.2821.6451.962.0542.3262.5762.8073.0913.291Khoảng tin cậy (CI)50%60%70%80%90%95%96%98%99%99.50%99.80%99.90%

Ghi chú: Khoảng tin cậy là CI = > \[\alpha \] = 1 -CI

Phân phối Student là gì?

Phân phối student có hình dạng  đối xứng gần giống với phân phối chuẩn. Điểm khác duy nhất là ở phần đuôi khi có nhiều giá trị trung bình phân phối ra xa hơn, tạo cảm giác dài và nặng. Khác với phân phối chuẩn dùng để mô tả tổng thể thì phân phân phối student chỉ dùng để mô tả các mẫu khác nhau. Điều này dẫn đến khi cỡ mẫu càng lớn, thì hai phân phối này sẽ càng giống nhau.

Ứng dụng

Phân phối t dùng trong việc thống kê suy luận phương sai tổng thể khi tổng thể có giả thiết là có phân phối chuẩn, đặc biệt khi cỡ mẫu  nhỏ thì dùng phân phối này sẽ cho kết quả chính xác hơn rất nhiều. Thêm nữa, còn  được ứng dụng trong kiểm định giả thiết về trung bình khi chưa biết phương sai tổng thể. Được ứng dụng trong cả xác suất thống kê và kinh tế lượng.

Tính chất

Cũng đối xứng quanh 0 giống như phân phối chuẩn hóa tuy nhiên hình dạng thấp hơn. Khi bậc tự do càng lớn thì phân phối student càng giống hình dạng của phân phối chuẩn. Do đó người ta qui ước khi mẫu lớn hơn 30 thì sẽ được xem như là phân phối chuẩn. Tính chất này khá quan trọng và có thể giúp chúng ta giải được nhiều bài tập một cách nhanh chóng hơn

Cách tra bảng phân phối student (phân phối t)

Ví dụ: Độ tin cậy 90% và với n=41, vây t(n-1) tra bảng ra kết quả bao nhiêu? anpha/2?

Lời giải:

Độ tin cậy γ= 90% => 1 – α = 0.9  => α/2 = 0.025

Đề cho n = 41 tứ df = n – 1 = 40
t[ (n-1), α/2 ] =  t (40, 0.025) = 2. 056

Previous article Tập hợp Z - tập hợp số nguyên trong toán học

Next article Cách tính lim bằng máy tính và bài tập ứng dụng

Nguyễn Tấn Linh

Giáo Viên

"Website được tạo ra với mục đích chia sẻ tài liệu các môn học, phục vụ cho các em học sinh, giáo viên và phụ huynh học sinh trong quá trình học tập, giảng dạy. Mang sứ mệnh tạo nên một thư viện tài liệu đầy đủ nhất, có ích nhất và hoàn toàn miễn phí. +) Các tài liệu theo chuyên đề +) Các đề thi của các trường THPT, THCS trên cả nước +) Các giáo án tiêu biểu của các thầy cô +) Các tin tức liên quan đến các kì thi chuyển cấp, thi đại học. +) Tra cứu điểm thi THPT quốc gia +) Tra cứu điểm thi vào lớp 10, thi chuyển cấp"